Skip to content

Shared Memory

In this tutorial, we will explore the concept of shared memory matrix multiplication. This technique involves partitioning the global matrix into smaller tiled matrices that are designed to fit into the shared memory of Nvidia GPUs. Utilizing shared memory is advantageous, as it offers significantly higher bandwidth compared to access to global memory, thereby enhancing performance in computational tasks.

  • This is very similar to the previous example; however, we just need to allocate the small block matrix into shared memory. The example below shows the blocking size for a and b matrices, respectively, for global A and B matrices.
      // Shared memory allocation for the block matrix  
      __shared__ int a_block[BLOCK_SIZE][BLOCK_SIZE];
      __shared__ int b_block[BLOCK_SIZE][BLOCK_SIZE];
    

  • Then, we need to iterate elements within the block size and, finally, with the global index. These can be achieved with CUDA threads.

  • You can also increase the shared memory or L1 cache size by using cudaFuncSetCacheConfig. For more information about CUDA API, please refer to cudaFuncSetCacheConfig.

    Tips
    cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferL1);
    //cudaFuncSetCacheConfig(kernel, cudaFuncCachePreferShared);
    
    cudaFuncCachePreferNone: no preference for shared memory or L1 (default)
    cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache
    cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory
    cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory
    
    // simple example usage increasing more shared memory 
    #include<stdio.h>
    int main()
    {
      // example of increasing the shared memory 
      cudaDeviceSetCacheConfig(My_Kernel, cudaFuncCachePreferShared);
      My_Kernel<<<>>>();
      cudaDeviceSynchronize(); 
      return 0;
    }
    
  • Different Nvidia GPUs provide different configurations; for example, Ampere GA102 GPU Architecture will support the following configuration:

    128 KB L1 + 0 KB Shared Memory
    120 KB L1 + 8 KB Shared Memory
    112 KB L1 + 16 KB Shared Memory
    96 KB L1 + 32 KB Shared Memory
    64 KB L1 + 64 KB Shared Memory
    28 KB L1 + 100 KB Shared Memory
    

Questions and Solutions

Example: Shared Memory - Matrix Multiplication
// Matrix-multiplication-shared-template.cu
//-*-C++-*-
#include<iostream>
#include<cuda.h>

// block size for the matrix 
#define BLOCK_SIZE 16

using namespace std;

// Device call (matrix multiplication)
__global__ void matrix_mul(const float *d_a, const float *d_b, 
         float *d_c, int width)
 {
  // Shared memory allocation for the block matrix  
  __shared__ int a_block[BLOCK_SIZE][BLOCK_SIZE];
  ...

  // Indexing for the block matrix
  int tx = threadIdx.x;
  ...

  // Indexing global matrix to block matrix 
  int row = threadIdx.x+blockDim.x*blockIdx.x;
  ...

  // Allow threads only for the size of rows and columns (we assume square matrix)
  if ((row < width) && (col< width))
    {
      // Save temporary value for the particular index
      float temp = 0;
      for(int i = 0; i < width / BLOCK_SIZE; ++i)
        {
          // Allign the global matrix to the block matrix 
          a_block[ty][tx] = d_a[row * width + (i * BLOCK_SIZE + tx)];
          b_block[ty][tx] = d_b[(i * BLOCK_SIZE + ty) * width + col];

          // Make sure all the threads are synchronized
          ....

          // Multiply the block matrix 
          for(int j = 0; j < BLOCK_SIZE; ++j)
            {
              temp += a_block[ty][j] * b_block[j][tx];    
            }
          // Make sure all the threads are synchronized
          ...
       }
      // Save block matrix entry to the global matrix 
      ...
    }
}

// Host call (matrix multiplication)
float * cpu_matrix_mul(float *h_a, float *h_b, float *h_c, int width)   
{                                                                 
  for(int row = 0; row < width ; ++row)                           
    {                                                             
      for(int col = 0; col < width ; ++col)                       
        {                                                         
          float temp = 0;                                       
          for(int i = 0; i < width ; ++i)                         
            {                                                     
              temp += h_a[row*width+i] * h_b[i*width+col];      
            }                                                     
          h_c[row*width+col] = temp;                            
        }                                                         
    }   
  return h_c;           
}


int main()
{  
 cout << "Programme assumes that matrix size is N*N "<<endl;
 cout << "Matrix dimensions are assumed to be multiples of BLOCK_SIZE=16" << endl;
 cout << "Please enter the N size number "<< endl;
 int N=0;
 cin >> N;

 // Initialize the memory on the host
 float *a, *b, *c, *host_check;       

 // Initialize the memory on the device
 float *d_a, *d_b, *d_c; 

 // Allocate host memory
 a   = (float*)malloc(sizeof(float) * (N*N));
 b   = (float*)malloc(sizeof(float) * (N*N));
 c   = (float*)malloc(sizeof(float) * (N*N));
 host_check = (float*)malloc(sizeof(float) * (N*N));

 // Initialize host arrays
 for(int i = 0; i < (N*N); i++)
    {
      a[i] = 2.0f;
      b[i] = 2.0f;
    }

 // Allocate device memory
 cudaMalloc((void**)&d_a, sizeof(float) * (N*N));
 cudaMalloc((void**)&d_b, sizeof(float) * (N*N));
 cudaMalloc((void**)&d_c, sizeof(float) * (N*N));

 // Transfer data from host to device memory
 cudaMemcpy(d_a, a, sizeof(float) * (N*N), cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, sizeof(float) * (N*N), cudaMemcpyHostToDevice);
 cudaMemcpy(d_c, c, sizeof(float) * (N*N), cudaMemcpyHostToDevice);

 // Thread organization
 dim3 Block_dim(BLOCK_SIZE, BLOCK_SIZE, 1);                
 ...

 // Device function call 
 matrix_mul<<<Grid_dim, Block_dim>>>(d_a, d_b, d_c, N);

 // Transfer data back to host memory
 cudaMemcpy(c, d_c, sizeof(float) * (N*N), cudaMemcpyDeviceToHost);

 // Cpu computation for verification 
 cpu_matrix_mul(a,b,host_check,N);

 // Verification
 bool flag=1;
 for(int i = 0; i < N; i++)
   {
    for(int j = 0; j < N; j++)
      {
       if(c[j*N+i]!= host_check[j*N+i])
         {
          flag=0;
          break;
         }
      }
   }
  if (flag==0)
    {
    cout <<"But, two matrices are not equal" << endl;
    cout <<"Matrix dimensions are assumed to be multiples of BLOCK_SIZE=16" << endl;
    }
    else
    cout << "Two matrices are equal" << endl;

  // Deallocate device memory
  cudaFree(d_a);
  cudaFree(d_b);
  cudaFree(d_c);

  // Deallocate host memory
  free(a); 
  free(b); 
  free(c);
  free(host_check);

 return 0;
}
// Matrix-multiplication-shared.cu
//-*-C++-*-
#include<iostream>
#include<cuda.h>

// block size for the matrix 
#define BLOCK_SIZE 16

using namespace std;

// Device call (matrix multiplication)
__global__ void matrix_mul(const float *d_a, const float *d_b, 
float *d_c, int width)
{
  // Shared memory allocation for the block matrix  
  __shared__ int a_block[BLOCK_SIZE][BLOCK_SIZE];
  __shared__ int b_block[BLOCK_SIZE][BLOCK_SIZE];

  // Indexing for the block matrix
  int tx = threadIdx.x;
  int ty = threadIdx.y;

  // Indexing global matrix to block matrix 
  int row = threadIdx.x+blockDim.x*blockIdx.x;
  int col = threadIdx.y+blockDim.y*blockIdx.y;

  // Allow threads only for the size of rows and columns (we assume square matrix)
  if ((row < width) && (col< width))
    {
      // Save temporary value for the particular index
      float temp = 0;
      for(int i = 0; i < width / BLOCK_SIZE; ++i)
         {
          // Allign the global matrix to the block matrix 
          a_block[ty][tx] = d_a[row * width + (i * BLOCK_SIZE + tx)];
          b_block[ty][tx] = d_b[(i * BLOCK_SIZE + ty) * width + col];

          // Make sure all the threads are synchronized
          __syncthreads(); 

          // Multiply the block matrix
          for(int j = 0; j < BLOCK_SIZE; ++j)
            {
              temp += a_block[ty][j] * b_block[j][tx];    
            }
            __syncthreads();
         }
      // Save block matrix entry to the global matrix 
      d_c[row*width+col] = temp;
    }
}

// Host call (matrix multiplication)
float * cpu_matrix_mul(float *h_a, float *h_b, float *h_c, int width)   
{                                                                 
  for(int row = 0; row < width ; ++row)                           
    {                                                             
      for(int col = 0; col < width ; ++col)                       
        {                                                         
          float single_entry = 0;                                       
          for(int i = 0; i < width ; ++i)                         
            {                                                     
              single_entry += h_a[row*width+i] * h_b[i*width+col];      
            }                                                     
          h_c[row*width+col] = single_entry;                            
        }                                                         
    }   
  return h_c;           
}


int main()
 {  
   cout << "Programme assumes that matrix size is N*N "<<endl;
   cout << "Matrix dimensions are assumed to be multiples of BLOCK_SIZE=16" << endl;
   cout << "Please enter the N size number "<< endl;
   int N=0;
   cin >> N;

   // Initialize the memory on the host
   float *a, *b, *c, *host_check;       

   // Initialize the memory on the device
   float *d_a, *d_b, *d_c; 

   // Allocate host memory
   a   = (float*)malloc(sizeof(float) * (N*N));
   b   = (float*)malloc(sizeof(float) * (N*N));
   c   = (float*)malloc(sizeof(float) * (N*N));
   host_check = (float*)malloc(sizeof(float) * (N*N));

   // Initialize host arrays
   for(int i = 0; i < (N*N); i++)
    {
      a[i] = 2.0f;
      b[i] = 2.0f;
    }

  // Allocate device memory
  cudaMalloc((void**)&d_a, sizeof(float) * (N*N));
  cudaMalloc((void**)&d_b, sizeof(float) * (N*N));
  cudaMalloc((void**)&d_c, sizeof(float) * (N*N));

  // Transfer data from host to device memory
  cudaMemcpy(d_a, a, sizeof(float) * (N*N), cudaMemcpyHostToDevice);
  cudaMemcpy(d_b, b, sizeof(float) * (N*N), cudaMemcpyHostToDevice);
  cudaMemcpy(d_c, c, sizeof(float) * (N*N), cudaMemcpyHostToDevice);

  // Thread organization
  dim3 Block_dim(BLOCK_SIZE, BLOCK_SIZE, 1);                
  dim3 Grid_dim(ceil(N/BLOCK_SIZE), ceil(N/BLOCK_SIZE), 1);

  // Device function call 
  matrix_mul<<<Grid_dim, Block_dim>>>(d_a, d_b, d_c, N);

  // Transfer data back to host memory
  cudaMemcpy(c, d_c, sizeof(float) * (N*N), cudaMemcpyDeviceToHost);

  // CPU computation for verification 
  cpu_matrix_mul(a,b,host_check,N);

  // Verification
  bool flag=1;
  for(int i = 0; i < N; i++)
    {
     for(int j = 0; j < N; j++)
       {
         if(c[j*N+i]!= host_check[j*N+i])
           {
             flag=0;
             break;
           }
       }
    }
  if (flag==0)
    {
      cout <<"But, two matrices are not equal" << endl;
      cout <<"Matrix dimensions are assumed to be multiples of BLOCK_SIZE=16" << endl;
    }
  else
    cout << "Two matrices are equal" << endl;

  // Deallocate device memory
  cudaFree(d_a);
  cudaFree(d_b);
  cudaFree(d_c);

  // Deallocate host memory
  free(a); 
  free(b); 
  free(c);
  free(host_check);

 return 0;
}
Compilation and Output
// compilation
$ nvcc -arch=sm_70 Matrix-multiplication-shared.cu -o Matrix-multiplication-shared

// execution
$ ./Matrix-multiplication-shared
The programme assumes that the matrix size is N*N 
Matrix dimensions are assumed to be multiples of BLOCK_SIZE=16
Please enter the N size number
$ 256

// output
$ Two matrices are equal
Questions
  • Could you resize the BLOCK_SIZE number and check the solution's correctness?
  • Can you also create a different kind of thread block and matrix size and check the solution's correctness?
  • Please try using cudaFuncSetCacheConfig and check if you can successfully execute the application.
cudaFuncCachePreferNone: no preference for shared memory or L1 (default)
cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache
cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory
cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory