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Computational chemistry

Chemistry on a computer instead of in a laboratory.

Use of computer calculations to predict the structure and in turn the
properties of matter.

Computational chemistry/physics/materials science has become widely
used because of:

Dramatic increase in computational power/speed and the
Design of efficient quantum chemical algorithms.

The computer calculations enable us to:
explain and rationalize known chemistry.
explore new or unknown chemistry.
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Why doing chemistry on a computer?

Calculations are easy to perform, while experiments are difficult.
Calculations are safe, whereas many experiments are dangerous.
Calculations are less costly, while experiments can be more
expensive.
Calculations can be performed in any chemical system, while
experiments are relatively limited.
Calculations can give direct information, whereas there is
uncertainty in interpreting experimental observations.
Calculations give fundamental information about the
structure-property relationships of materials even at a molecular
level.
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When a computational chemistry project is considered
successful?

What is the property under study?
How accurate should the calculation be? (inclusion or
exclusion of electronic degrees of freedom)
How big the system under study is? (molecule/big system as a
membrane-protein in solution/polymeric melt)
With respect to the size of the system and the property we aim to
study, what level of approximation we can introduce in the
computational protocol?
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When a computational chemistry project is considered
successful?

Golden rule

Before applying a particular level of theory to an experimentally
unknown situation, it is essential to apply the same level of theory to
situations where experimental information is available.

It is essential to know how accurate our results have to be with respect
to the property under study, for our results to be considered accurate.

"Chemical accuracy": within 1 kcal/mol in energy
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The rise of computational chemistry in industry

More than 70% of the leading pharmaceutical companies have
integrated specialized computational chemistry teams that drive
strategic innovation.

Cost efficiency: Advanced molecular simulations systematically
minimize experimental iterations reducing R&D expenditures
significantly.
Early stage virtual screening: Computational protocols enable
rapid identification of optimal candidates, expediting discovery and
filtering ineffective molecules prior to experiment.
Enhanced prediction accuracy: High-precision computational
models improve the reliability of property predictions, guiding
more effective experimental validation strategies.
Accelerated development: Simulations expedite molecular
design cycles, enabling rapid hypothesis testing and shortening
product development timelines.

Benefits: Speed, Cost and Accuracy
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Putting computational chemistry to work!

Drug design
Medicinal chemistry design
Consumer packaged food
Protein/antibody engineering
Enzyme design
Organic electronics
Pharmaceutical formulations
Catalysis design
Polymer design
Surface chemistry
Energy capture and storage
Semiconductors
Peptide design
Metals, alloys, and ceramics design
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Importance of computational chemistry methods in
industry
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Importance of computational chemistry methods in
industry
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Postulates of quantum mechanics

1 Postulate 1
The state of a quantum system is described by the wavefunction
Ψ(r, t).
Ψ∗(r, t)Ψ(r, t) dτ gives the probability of finding the particle in
volume dτ at r.
Normalization:

∫∞
−∞ Ψ∗(r, t)Ψ(r, t) dτ = 1

Wavefunction must be single-valued, continuous, finite, and
normalized (also for many-particle systems).

2 Postulate 2
To every observable in classical mechanics there corresponds a
linear, Hermitian operator in quantum mechanics.
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Postulates of quantum mechanics

1 Postulate 3
Measurement of the observable associated to operator Â yields only
its eigenvalues a (eigenvalue equation):

ÂΨ(r, t) = aΨ(r, t)

If the system is in an eigenstate of Â, with a single eigenvalue a,
then any measurement will yield a.

2 Postulate 4
If a system is in a state described by a normalized wavefunction Ψ,
then the expectation value of the observable corresponding to Â is
given by:

⟨A⟩ =
∫ ∞

−∞
Ψ∗(r, t) ÂΨ(r, t) dτ
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Postulates of quantum mechanics

1 Postulate 5
The wavefunction or state function of a system evolves in time
according to the time-dependent Schrödinger equation (the central
equation of quantum mechanics):

Ĥ Ψ(r, t) = iℏ
∂

∂t
Ψ(r, t)

2 Postulate 6
The total wavefunction must be antisymmetric with respect to the
interchange of all coordinates of one fermion with those of another.
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The molecular Hamiltonian

Quantum chemistry is (typically) based on the non-relativistic
Schrödinger equation within the Born–Oppenheimer approximation.

Ĥtot(R,P, r,p)Ψtot(R,P, r,p) = E(R,P)Ψtot(R,P, r,p)

r,p = ∂/∂r: electronic collective coordinates.
R,P = ∂/∂R: nuclear collective coordinates.
E: allowed energy of the system.
Ψtot: function of the positions of all electrons and nuclei.
Ĥtot: differential operator constructed from the classical Hamiltonian.
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The molecular Hamiltonian

For a system of nuclei and electrons in vacuum with no external fields,
neglecting magnetic interactions, using atomic units:

Ĥtot = − 1
2

∑
I

1

MI
∇2

I − 1
2

∑
n

∇2
n +

∑
I<J

ZIZJ

|RI −RJ |

−
∑
In

ZI

|RI − rn|
+

∑
n<m

1

|rm − rn|
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The molecular Hamiltonian

Due to Born-Oppenheimer approximation some terms coupling the
electrons and nuclei can be neglected.

Ψtot(R, r) = Ψnucl(R)Ψelec(r;R)

and
Ĥtot = T̂nucl(P,R) + Ĥelec(p, r;R)

ignoring the dependence of Ĥelec on the momenta of the nuclei P.

Solution of Schrödinger equation for the electrons, with fixed nuclei,
indicated by (;R):

Ĥelec(p, r;R)Ψelec(r;R) = E(R)Ψelec(r;R)

V (R), potential energy surface: collection of all possible nuclear
configurations, R together with the associated energies.
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The molecular Hamiltonian

Approximate Schrödinger equation for the nuclei, integrating over all
electron positions r and ignoring any incovenient term.

⟨Ψelec(r,R)|Ĥtot|Ψelec(r,R)⟩ ≈ Ĥnucl = T̂nucl(P,R) + V (R)

with (
T̂nucl(P,R) + V (R)

)
Ψnucl(R) = EnuclΨnucl(R)
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The nuclear Schrödinger equation

V (R) is usually expanded to second order R about a stationary point
R0:

V (R) ≈ V (R0) +
1

2

∑
i,j

(
∂2V (R)

∂Ri∂Rj

)
(Ri −R0,i)(Rj −R0,j)

No need to solve the electronic Schrödinger equation at many R’s.
Only required:

locate stationary point R0.
evaluate energy and Hessian (second derivatives) at that R0.
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The electronic Schrödinger equation

How can one compute the required potential V (R) that acts on the
nuclei at a given geometry R?

Ĥelec(p, r;R)Ψelec(r;R) = E(R)Ψelec(r;R)

in vaccum, in the absence of fields, and neglecting magnetic effects:

Ĥelec(R) = − 1
2

∑
n

∇2
n +

∑
I<J

ZIZJ

|RI −RJ |

−
∑
In

ZI

|RI − rn|
+

∑
n<m

1

|rm − rn|
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The electronic Schrödinger equation

Pauli exclusion principle: Because electrons are indistinguishable
fermions, any permutation of two electrons must change the sign of the
wavefunction Ψelect(r;R).

Slater determinant many-electron wavefunctions satisfy the Pauli
principle.

Ψel(r1, r2, . . . , rN ) =
∑

m1,m2,...,mN

Cm1,m2,...,mN

×
∣∣ϕm1(r1)ϕm2(r2) · · · ϕmN (rN )

∣∣
where

∣∣ϕm1(r1)ϕm2(r2) · · · ϕmN (rN )
∣∣ = 1√

N !

∣∣∣∣∣∣∣
ϕm1 (r1) ϕm2 (r1) ··· ϕmN

(r1)

ϕm1 (r2) ϕm2 (r2) ··· ϕmN
(r2)

...
...

. . .
...

ϕm1 (rN ) ϕm2 (rN ) ··· ϕmN
(rN )

∣∣∣∣∣∣∣
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The electronic Schrödinger equation

ϕmi(ri): one-electron molecular orbitals which are usually given as an
expansion in "atomic orbitals", χn:

ϕm(r, s) =
∑
n

Dmn χn(r)⊗ s

Coefficients D and C fully characterize the solution of the electronic
Schrödinger equation for atoms and molecules.
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Main topic of electronic structure methods

The development of approximated methods for the solution of
the Schrödinger equation for the electrons (given by the
coefficients D and C) for obtaining the potential for the nuclei
dynamics V (R).

Translation of this problem into a formulation suited for computation:
choose an appropriate set of basis functions.
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Basis functions in quantum chemistry

One or many-electron molecular wavefunctions are described in the
basis of atom centered functions.

Simplified atomic orbitals: sum of Gaussians centered on the atoms
times a polynomial, Pl, in the electron coordinates relative to that
atom:

χn(r) =
∑
l

N l
n exp

(
− αnl |r−Rn

I |2
)
Pl

(
r−Rn

I

)
Basis sets: conventional sets of atomic orbitals that cover the
polynomials up to a certain order with certain choices of "α".

Typical names: 6-31G, TZ2P and cc-pVQZ.

Algorithmic procedure for the choice of basis sets: choose a basis, then
vary coefficients D and C to approximate Ψelec that best solves the
Schrödinger equation.
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Slater type orbitals (STOs)

χζ,n,l,m(r, θ, φ) = N Yl,m(θ, φ) r n−1 e−ζr

N : normalization constant
Yl,m: spherical harmonic functions
exponential dependence on the distance between the nucleus and the
electron: mirrors the exact decay behavior of the orbitals for the
hydrogen atom.

STOs are primarily used for atomic and diatomic systems where high
accuracy is required, and in semiempirical methods where all three- and
four-center integrals are neglected.
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Gaussian type orbitals (GTOs)

χζ,n,l,m(r, θ, φ) = N Yl,m(θ, φ) r 2n−2−l e−ζr2

χζ,lx,ly ,lz(x, y, z) = N xlx yly zlz e−ζr2

where the sum of lx, ly and lz determines the type of orbital (for
example lx + ly + lz = 1 is a p-orbital).
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Comparison between STO and GTO

GTOs are widely used in electronic structure calculations, but their r2

exponential form introduces some limitations compared with STOs:

At the nucleus, a GTO has zero slope, lacking the “cusp” (discontinuous
derivative), behavior of an STO, and thus does not represent the
near-nuclear region as accurately. Far from the nucleus, a GTO
decays too rapidly, so the tail of the wavefunction is poorly
described.

Both STOs and GTOs can form complete basis. To reach the same
accuracy, roughly three times as many GTOs are needed compared
with STOs. This increase in size is compensated by the fact that
integrals with GTOs can be calculated much more easily. For reasons
of computational efficiency, GTOs are therefore used almost
universally in practice.
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Hartree-Fock method

Hartree-Fock (HF) provides a mean-field approximation:
Electrons do not interact with each other. The effect of other
electrons is accounted for in a mean-field theory context.
Wavefunction represented as a single Slater determinant made of
one-electron molecular orbitals.
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Simplified notation for the Hamiltonian

Ĥel =
∑
i

ĥ(i) +
∑
i<j

v̂(i, j) + VNN

ĥ(i) = −1

2
∇2

i −
∑
I

ZI

|ri −RI |

v̂(i, j) =
1

|ri − rj |

ĥ(i): one-electron operator.
v̂(i, j): two-electron operator.
VNN : constant for fixed set of nuclei R.
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Variational principle

For a time-independent Hamiltonian operator, any trial wavefunction
will have an energy expectation value that is greater than or equal to
the true ground state wavefunction.

HF energy is defined variationally:

EHF[{ϕi}] =
⟨Ψ|Ĥel|Ψ⟩
⟨Ψ|Ψ⟩

≥ E0

Energy functional minimized with respect to orbitals ϕi.
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Enforcing orthonormality

To ensure that the variational procedure leaves the orbitals
orthonormal, Lagrange multipliers are introduced:

L[{ϕi}] = EHF[{ϕi}]−
∑
ij

ϵij (⟨ϕi|ϕj⟩ − δij)

ϵij are the undetermined Langrange multipliers.
⟨i|j⟩ is the overlap between spin orbitals i and j.
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Hartree-Fock equations

h(x1)ϕi(x1) +
∑
j ̸=i

[∫
dx2 |ϕj(x2)|2r−1

12

]
ϕi(x1)

−
∑
j ̸=i

[∫
dx2 ϕ

∗
j (x2)ϕi(x2)r

−1
12

]
ϕj(x1) = ϵiϕi(x1)

where ϵi is the energy eigenvalue associated with orbital ϕi.
First term: one-electron Hamiltonian h(x1).
Second: Coulomb interaction of an electron in spin orbital ϕi with
the average charge distribution of the other electrons. (HF: a
mean field theory).
Third: exchange term (it arises from the antisymmetry
requirement of the wavefunction).
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Hartree-Fock operator

f(x1) = h(x1) +
∑
j

(
Jj(x1)−Kj(x1)

)
f(x1)ϕi(x1) = ϵiϕi(x1)

Self-consistent eigenvalue problem.
Orbitals ϕi are eigenfunctions of f .
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Matrix representation of the Hartree-Fock equation

Introducing a basis set transforms the HF equations into the Roothaan
equations. Denoting the atomic orbital basis functions as χ, we have
the expansion:

ϕi =

K∑
µ=1

Dµi χµ

for each spin orbital i. This leads to:

f(x1)
∑
ν

Dνiχν(x1) = ϵi
∑
ν

Dνiχν(x1)
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Projecting the Fock equation to a basis

Left multiplying by χµ(χ1) and integrating yields a matrix equation:

∑
ν

Dνi

∫
dx1χ

∗
µ(x1)f(x1)χν(x1) = ϵi

∑
ν

Dνi

∫
dx1χ

∗
µ(x1)χν(x1)

Introduce matrix element notation:

Sµν =

∫
dx1χ

∗
µ(x1)χν(x1), Fµν =

∫
dx1χ

∗
µ(x1)f(x1)χν(x1)
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Self-consistent-field procedure

In matrix form: ∑
ν

FµνDνi = ϵi
∑
ν

SµνDνi

More simple as matrices:
FD = SDε

ε is a diagonal of the orbital energies ϵi.
Generalized eigenvalue problem: FD = SDε

To simplify: transform to an orthogonal basis (S → I).
Then it reduces to a standard eigenvalue problem for F.
But: F depends on the orbitals (and thus on D).
⇒ Must solve iteratively until self-consistency is reached.

Solution of Hartree-Fock-Roothaan equations are often called
the self-consistent-field procedure.

Electronic structure methods 35 / 36



Self-consistent-field procedure

1 Build an initial density P (0).
2 Loop until convergence:

1 Form F (k) from P (k).
2 Solve F (k)C(k+1) = SC(k+1)ε(k+1).
3 Update P (k+1) from occupied columns of C(k+1).
4 Check ∆E, ∥∆P∥.

3 Report Eel and orbitals.
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