Density Functional Theory (DFT) calculations in
PySCF

This set of exercises comprises all the information you need to run a DFT calculation in PySCF. After
giving a detailed account of how to install the software, you will learn how to create the inputs and apply
the DFT knowledge to your own electronic structure calculation.

Installation of PySCF

Below you can find instructions on how to install PySCF for non-developers, adapted from the PySCF
website (https://pyscf.org/index.html).

Please connect to meluxina and move to the /project/home/p201028 directory:
cd /project/home/p201028

Then, request an interactive job on a CPU node for 1 hour:

salloc -A p201028 --reservation=cpudev -q dev -N 1 -t 1:0:0

Install PySCF using pip:

pip install --prefer-binary pysct

The pip package provides a precompiled PySCF code. For more options on how to install PySCF, please
refer to the website: https://pyscf.org/user/install.html

Inputs

To perform a DFT calculation, two main inputs are required: the molecular geometry (or crystal
structure) and the choice of basis sets.
Initializing a molecule

There are three ways to define a molecule.

The first one is to use the Mole.build () method to initialize a molecule, in this case HoO:

from pyscf import gto

mol = gto.Mole ()

mol.build(
atom = .
basis =)

To confirm that the molecular geometry and basis sets have been set up properly, you can run:

https://pyscf.org/index.html
https://pyscf.org/user/install.html

print (mol.atom)
print (mol.basis)

The second one is to assign the geometry, basis, to the Mole object, followed by calling the build()
method:

from pyscf import gto
mol = gto.Mole()
mol.atom =

mol .basis =
mol.build ()

In this case as well, you can confirm that the molecular geometry and basis sets have been set up correctly
by running:

print (mol.atom)
print (mol.basis)

The third way is to use the shortcut functions pyscf.M() or Mole.M(). These functions pass all the
arguments to the build () method:

import pysct

mol = pyscf.M(
atom = .
basis =)

from pyscf import gto

mol = gto.M(
atom = .
basis =)

The molecular geometry is specified in Cartesian coordinates, with Angstrom as the default unit. The
unit can be set using the unit attribute to either "Angstrom" or "Bohr".

mol.unit = ’B’

The attribute mol.unit is case-insensitive. Any string starting with "B" or "AU" is interpreted as Bohr;
all other values are treated as Angstrom.

The input parser supports both Cartesian and Z-matrix formats, as well as explicit nuclear charges.
Atoms can be labeled with numbers or special characters to distinguish them, allowing different basis
sets, masses, or nuclear models to be assigned. Geometries can also be defined directly in the internal
format of Mole.atom using Python lists, tuples, or NumPy arrays, or read from an .xyz file. For details,
see: https://pyscf.org/user/gto.html.

After building the Mole object, the geometry can be accessed with Mole.atom_coords(), which returns
an (N, 3) array of atomic positions. Note that the default unit is Bohr.

print (mol.atom_coords (unit=))
[[0. 0. 0.]

[0. 1. 0.]

0. 0. 1.]1]

Basis sets

Assigning a basis set name (string) to Mole.basis applies it to all atoms. If different basis sets are needed
for different elements, Mole.basis should be specified as a Python dictionary.

mol.basis = {’0’: ’sto-3g’, ’H’: ’6-31g’}

https://pyscf.org/user/gto.html

Custom basis sets can be defined with gto.basis.parse(), which parses a string in NWChem format
(https://www.basissetexchange.org/).

mol.basis = {’0’: gto.basis.parse(’’’

C S
71.6168370 0.15432897
13.0450960 0.53532814
3.5305122 0.44463454
C SP
2.9412494 -0.09996723 0.15591627
0.6834831 0.39951283 0.60768372
0.2222899 0.70011547 0.39195739
777)}

As with geometry input, the basis sets dictionary can use either atomic symbols (case-insensitive) or
atomic nuclear charges. Numbers or special characters may be prefixed or suffixed to atom labels. If a
decorated symbol is not found in the dictionary, the parser removes the decoration and looks up the plain
atomic symbol.

In the following example, the 6-31G basis set will be assigned to the atom H1, but the ST0-3G basis will
be used for the atom H2:

mol.atom = ‘8 0 0 0; H1 0 1 0; H2 0 0 1’
mol.basis = {‘0’: ‘sto-3g’, ‘H’: ‘sto-3g’, ‘H1’: ‘6-31G’}

Basis sets format

Basis sets data should be supplied in NWChem format, either as a text file or a Python script. PySCF
converts them in the internal format, which looks like:
[[angular, kappa, [[exp, c_1, c_2, ..],
lexp, c_1, c_2, ..],
R
langular, kappa, [[exp, c_1, c_2, ..],
lexp, c_1, c_2, ..]
... 111

where angular is the angular momentum, kappa are the Gaussian exponents and ¢ the contraction
coefficients. kappa can have values; —I — 1 (corresponding to spinors with j = [+ 1/2), [(corresponding
to spinors with j =1 —1/2) or 0. When kappa is 0, both types of spinors are assumed in the basis.

GTO basis functions are stored in the following order:
e atoms
e angular momentum
e shells
e spherical harmonics

Basis functions are first grouped by the atoms to which they belong. Within each atom, they are organized
by angular momentum. For a given angular momentum, shells are ordered from inner to outer, i.e., from
large to small exponents. A shell may represent a true atomic shell (a linear combination of Gaussians)
or a single primitive Gaussian with multiple angular components.

https://www.basissetexchange.org/

DFT calculations

DFT is a self-consistent field method, therefore a self-consistent iterative procedure is applied, which
begins from some initial guess. Kohn-Sham DFT has been implemented through derived classes of the
pysct.scf.hf.SCF parent class. As such, the methods and capabilities introduced in self-consistent field
(SCF) methods are also available to the dft module.

Let’s run our first DFT calculation!

Perform a DFT calculation of the hydrogen fluoride (HF) molecule to calculate its energy.

from pyscf import gto, dft

mol_hf = gto.M(atom = , basis = , symmetry = True)
mf_hf = dft.RKS(mol_hf)
mf_hf.xc = # default

mf_hf .kernel ()

symmetry: Point group symmetry information
The point group symmetry information is held in the Mole object. The symmetry module of PySCF can
detect arbitrary point groups.

Check the detected point group of the system, using:

print (mol.topgroup)

If Mole.symmetry is set, Mole.build () checks that the geometry satisfies the specified symmetry. If it
does not, initialization stops and an error is raised.

.kernel(): Function to call HF driver.

Re-run the calculation with different basis sets. For details, consult https://www.basissetexchange.
org/.

https://www.basissetexchange.org/
https://www.basissetexchange.org/

Evaluate the effect of different exchange-correlation functionals.

from pyscf import gto
from pyscf import dft

mol = gto.M(

atom = 77’

0 O. 0. 0.

H O. -0.757 0.587

H O. 0.757 0.B87 299,
basis = ’ccpvdz’)

mf = dft.RKS(mol)
B3LYP can be constructed

mf.xc = HF*0.2 + .08xLDA + .72%B88, .81xLYP + .19%xVWN’
el = mf.kernel ()
print(’E = %.15g ref = -76.3832244350081° % el)

A shorthand to input ’PBE,PBE’, which is a compound functional. Note the
shorthand input is different to the two examples ’PBE,’ and ’,PBE’ below.
mf .xc = ’PBE’

Exchange part only
mf.xc = ’PBE,’

Correlation part only
mf.xc = ’,PBE”’

.verbose: Control of the print level globally. The print level can be 0 (quiet, no output) to 9 (very
noisy).

Perform a DFT calculation of HyO molecule using BSLYP functional.

Geometry optimization

Perform geometry optimization of No molecule.

Install geomeTRIC and PyBerny.

pip install geometric
pip install pyberny

from pyscf import gto, dft
from pyscf.geomopt.geometric_solver import optimize
from pyscf.geomopt.berny_solver import optimize

mol = gto.M(atom= , basis=)
mf = dft.RKS(mol)
mf .xc =

geometric

from pyscf.geomopt.geometric_solver import optimize
mol_eq = optimize(mf, maxsteps=100)

print (mol_eq.tostring ())

pyberny
from pyscf.geomopt.berny_solver import optimize
mol_eq = optimize(mf, maxsteps=100)

print (mol_eq.tostring ())

Perform a geometry optimization calculation for the HoO you used above.

Submit jobs with slurm

Rather than running interactively, jobs can be submitted via slurm using a submission script. Example
for MeluXina:

#!/bin/bash -1

#SBATCH --qos=default
#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --ntasks-per-node=1
#SBATCH --time=00:05:00
#SBATCH --partition=cpu
#SBATCH -A p201028

#SBATCH --cpus-per-task=1

SLURM qos

number of nodes

number of tasks

number of tasks per node
time (HH:MM:SS)
partition

project account

CORES per task

H o H H H O HH

python3 geom.py > out

Save the above commands in a plain text file. If you are not familiar with other text editors, you can use
vi. You can open a new file, by typing vi and the name of the file:

vi job_script.sh

After hitting enter you will find yourself in vi. vi has three different working modes:

e Normal mode: If you start the program or if you hit Esc buttom. In this mode, you can give
commands to vi, as specified later.

e Insert mode: By typing i, you will be in insert mode. If you type something now, it will be inserted
in your file.

e Replace mode: By hitting i again in the insert mode, you will pass to replace mode. If you start
typing, vi will replace the letters below your cursor with a new one, rather than adding them. By
hitting i again, you switch back to regular insert mode.

In your freshly opened file switch to insert mode by pressing i. Then copy-paste the above commands.
To save the file, you have to exit the insert mode by pressing Esc. In escape mode, type :w to save the
file, or type :w job_script.sh to save it under a filename called job_script.sh. You can exit vi by
typing :q. If there were changes since your last save, type :q!, where the ! forces vi to quit, without
applying the changes.

To perform the geometry optimization via slurm rather than interactively, the PySCE commands should
be saved in a python script file, as well. Try running the No example from above using slurm, too.

