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Computational chemistry

Computational chemistry /physics/materials science has become widely
used because of:

e Dramatic increase in computational power /speed and the
@ Design of efficient quantum chemical algorithms.

The computer calculations enable us to:
@ explain and rationalize known chemistry.

e explore new or unknown chemistry.
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The rise of computational chemistry in industry

More than 70% of the leading pharmaceutical companies have
integrated specialized computational chemistry teams that drive
strategic innovation.

e Cost efficiency: Advanced molecular simulations systematically
minimize experimental iterations reducing R&D expenditures
significantly.

o Early stage virtual screening: Computational protocols enable
rapid identification of optimal candidates, expediting discovery and
filtering ineffective molecules prior to experiment.

o Enhanced prediction accuracy: High-precision computational
models improve the reliability of property predictions, guiding
more effective experimental validation strategies.

o Accelerated development: Simulations expedite molecular
design cycles, enabling rapid hypothesis testing and shortening
product development timelines.

Benefits: Speed, Cost and Accuracy
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Putting computational chemistry to work!

Drug design

Medicinal chemistry design
Consumer packaged food
Protein/antibody engineering
Enzyme design

Organic electronics
Pharmaceutical formulations
Catalysis design

Polymer design

Surface chemistry

Energy capture and storage
Semiconductors

Peptide design

Metals, alloys, and ceramics design
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Postulates of quantum mechanics

© Postulate 1

o The state of a quantum system is described by the wavefunction
U(r,t).

o U*(r,t) ¥(r,t)dr gives the probability of finding the particle in
volume d7 at r.

e Normalization: ffooo U*(r,t) U(r,t)dr =1

o Wavefunction must be single-valued, continuous, finite, and
normalized (also for many-particle systems).

@ Postulate 2

e To every observable in classical mechanics there corresponds a
linear, Hermitian operator in quantum mechanics.
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Postulates of quantum mechanics

@ Postulate 3

o Measurement of the observable associated to operator A yields only
its eigenvalues a (eigenvalue equation):

AU(r,t) = a¥(r,t)

o If the system is in an eigenstate of A, with a single eigenvalue a,
then any measurement will yield a.

© Postulate 4
o If a system is in a state described by a normalized Wavefunctior} v,
then the expectation value of the observable corresponding to A is
given by:
(A) = / U (r,4) AW(r, 1) dr

— 00
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Postulates of quantum mechanics

@ Postulate 5
e The wavefunction or state function of a system evolves in time
according to the time-dependent Schrodinger equation (the central
equation of quantum mechanics):
0

HU(r t) = ih oW (r,t)

@ Postulate 6

o The total wavefunction must be antisymmetric with respect to the
interchange of all coordinates of one fermion with those of another.
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The molecular Hamiltonian

Quantum chemistry is (typically) based on the non-relativistic
Schrédinger equation within the Born—Oppenheimer approximation.

Hiot(R,P,1,p) ¥t (R, P, r,p) = E(R,P) ¥ (R, P, ,p)

r,p = 0/0r: electronic collective coordinates.

R,P = 0/0R: nuclear collective coordinates.

E: allowed energy of the system.

W, function of the positions of all electrons and nuclei.

ﬁtat: differential operator constructed from the classical Hamiltonian.
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The molecular Hamiltonian

Due to Born-Oppenheimer approximation some terms coupling the
electrons and nuclei can be neglected.

Wiot (R, I‘) = \Ilnucl(R) ‘Ijelec (I‘; R)

and
Htot = Tnucl(Pa R) + Helec(pa r; R)

ignoring the dependence of I:Idec on the momenta of the nuclei P.

Solution of Schrédinger equation for the electrons, with fixed nuclei,
indicated by (;R):

A

Helec(p7 r; R) \I’elec(r; R) = E(R) \Ijelec(r; R)

V(R), potential energy surface: collection of all possible nuclear
configurations, R together with the associated energies.
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The nuclear Schrédinger equation

V(R) is usually expanded to second order R about a stationary point
R():

<a2V(R)

1
V(R) = V(Ro) + B Z OR.OR,

) (Ri —Ro;)(R; — Ro,)
i

No need to solve the electronic Schrodinger equation at many R’s.
Only required:

@ locate stationary point Ry.

e evaluate energy and Hessian (second derivatives) at that Ry.
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The electronic Schrodinger equation

Pauli exclusion principle: Because electrons are indistinguishable
fermions, any permutation of two electrons must change the sign of the
wavefunction Wepeq(r; R).

Slater determinant many-electron wavefunctions satisfy the Pauli
principle.

\Ijel(rlarQw--,rN) = § le,mg,...,mN

X ‘¢m1 (rl) ¢m2(r2) T (me(rN)‘

where

¢m1 (rl) ¢m2(r1) ¢mN(r1)
1 dm (r2) Pmq (r2) - Pm (r2)
|Gy (11) Gma (12) - by (8)| = ——= | . : "

Gy (ON) Sy (TN) = by (Tn)
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The electronic Schrodinger equation

®m, (ri): one-electron molecular orbitals which are usually given as an
expansion in "atomic orbitals", xy:

Gm(r,5) = > Dyin Xn(r) @ 5

Coefficients D and C fully characterize the solution of the electronic
Schrodinger equation for atoms and molecules.
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Main topic of electronic structure methods

The development of approximated methods for the solution of
the Schrédinger equation for the electrons (given by the
coefficients D and C) for obtaining the potential for the nuclei
dynamics V(R).

Translation of this problem into a formulation suited for computation:
choose an appropriate set of basis functions.
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Basis functions in quantum chemistry

One or many-electron molecular wavefunctions are described in the
basis of atom centered functions.

Simplified atomic orbitals: sum of Gaussians centered on the atoms
times a polynomial, P}, in the electron coordinates relative to that
atom:

Xn(r) = ZN; exp( — am [t — R}?) P(r — R})
l

Basis sets: conventional sets of atomic orbitals that cover the
polynomials up to a certain order with certain choices of "a".

Typical names: 6-31G, TZ2P and cc-pVQZ.

Algorithmic procedure for the choice of basis sets: choose a basis, then
vary coefficients D and C' to approximate V... that best solves the
Schrédinger equation.
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Hartree-Fock method

Hartree-Fock (HF) provides a mean-field approximation:

e Electrons do not interact with each other. The effect of other
electrons is accounted for in a mean-field theory context.

e Wavefunction represented as a single Slater determinant made of
one-electron molecular orbitals.
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Hartree-Fock equations

h(z1)¢i(x1 +Z

JF#i

/dwg [ 952)!27"1_21] i(z1)

_ Z [/dwz ¢ (w2)Pi(x2)r5 ] oj(x1) = €¢i(z1)
J#i

where ¢; is the energy eigenvalue associated with orbital ¢;.
e First term: one-electron Hamiltonian h(zy).

@ Second: Coulomb interaction of an electron in spin orbital ¢; with
the average charge distribution of the other electrons. (HF: a
mean field theory).

e Third: exchange term (it arises from the antisymmetry
requirement of the wavefunction).
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Hartree-Fock operator

flar) = h(z) + Y (Ji(z1) = Kj(21))
J
f(x1)gi(z1) = €igi(x1)
o Self-consistent eigenvalue problem.

e Orbitals ¢; are eigenfunctions of f.
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Self-consistent-field procedure

In matrix form:

Z Fpl/Dlji =€ Z S/LVDVi
v v

More simple as matrices:
FD = SDe¢
¢ is a diagonal of the orbital energies ¢;.
o Generalized eigenvalue problem: FD = SDe
e To simplify: transform to an orthogonal basis (S — I).
@ Then it reduces to a standard eigenvalue problem for F.
e But: F depends on the orbitals (and thus on D).
o = Must solve iteratively until self-consistency is reached.

Solution of Hartree-Fock-Roothaan equations are often called
the self-consistent-field procedure.
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Why Density Functional Theory (DFT)?

e DFT is one of the most popular and successful
quantum-mechanical approaches to matter.
e Routinely used to compute:

e Molecular binding energies
e Band structures of solids
o Widely applied across disciplines: from biology to materials science.

e DFT bridges quantum mechanics and real materials —
from atoms to solids.
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From wavefunction to density

All information about a system is contained in its wavefunction W, the
lowest-energy solution of the many-electron Schrédinger equation:

or, more compactly:
[To(r) + Ven (1, R) + Vyn (R) + Vee (r) | ¥ (r, R) = Eq¥(

e External potential: v(r,R) generated by the nuclei.

e For fixed nuclei: often written simply as v(r).
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Conventional quantum mechanical approach

Standard sequence:

v(r,R) = U(ry,...,ry) == Observables

One observable obtained this way is the electron density p(r).

Wavefunction-based methods (HF, CI, etc.) require massive
computational effort:

o Scales poorly with system size.
e Full-CI impractical beyond a few electrons.
e DFT provides a practical, accurate alternative for medium
(100 electrons) to large (thousands of electrons) systems.
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The core idea of DFT

@ The electron density is at the center of DFT.

@ DFT recognizes that nonrelativistic Coulomb systems differ only
by their potential v(r,R).

e The universal operators T, (kinetic) and V. (electron—electron
interaction) are treated once and for all.

e DFT provides a systematic way to map the many-body problem
(with V) onto a single-body problem (without V).

@ The calculation of the observables can be based on the electron
density.
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The density functional concept

Conceptual structure of DFT:
p(r) = Y(ry,re,...,ry) = v(r)

e Knowing the ground-state density p(r) uniquely determines the
wavefunction and potential and in turn all the observables.

o In practice, modern DFT calculations bypass explicit use of
many-body wavefunctions.
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The Hohenberg-Kohn theorem

e The Hohenberg-Kohn (HK) theorem is the foundation of
DFT.

o It states that the ground-state density po(r) uniquely determines:

o the ground-state wavefunction Wy(ry,...,ry),
e and thus all ground-state observables.

@ The theorem states that for the ground state the equation:

p(r) :M/‘--/\I'(r,rg,...,rN)\I/*(r,rg,...,rN)drg---drN

can be inverted.
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The Hohenberg-Kohn theorem

Given pg(r), one can in principle calculate ¥y.

Therefore, all ground-state observables are functionals of pg.

This might seem impossible at first:

o p(r) depends on 3 variables,
o U(ry,...,ry) depends on 3N variables.

The key: Wy is not an arbitrary function; it must not only
reproduce pg but minimize the energy as well.
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The Hohenberg-Kohn theorem

For a given ground-state density, the ground-state energy is:

Eyo = min (O[T + Ve + Von|0)

Y—po

For an arbitrary density p(r), we define:

E,[p] = min (V[T + Vie + Von|0)

U—p

o If p a density different from the ground state density pg in the
external potential v(r), then the ¥ that produces this density p is
different from the ground state wavefunction Vg, and according to
the variational principle the minimum obtained from E,[p] is
higher than (or equal to) the ground state energy E, o = E,[po].

Electronic structure methods



The Hohenberg-Kohn theorem

The total energy functional can be written as:

Eylp] = min(U|T + V.| 0) /dgrp

Flp] + Vol

e Flp] = minq,_>p<\Il|T + ‘7ee|\P> : internal energy functional;
independent of the external potential.

@ The universality of the internal energy functional allows us to
define the ground state wavefunction as that antisymmetric
N-particle function that delivers the minimum of F'[p] and
reproduces po.
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The first Hohenberg-Kohn theorem

The nondegenerate ground-state wavefunction Wy is a unique functional
of the ground state density pp(r).

Uo(r,ra,...,rN) = Y[po(r)]

All ground-state observables O are also functionals of po:

Oo = Olpo] = (¥]po]|O[¥[po])
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The second Hohenberg-Kohn theorem

For the special case of the total energy observable:
Eyo = Eu[po] = (¥[po]| H|¥[po])
where H = T + Vee + VeN.
The variational property holds:
Eylpo] < B[]
Analogous to the standard variational principle for U:
Eyo = (Yol H|Wo) < (V'|H|Y') = E,[V']

In exact DFT, if E[p] for fixed vy is evaluated for a density that is not
the ground state density of the system in potential v.,;, one never finds
a result below the true ground state energy.

Electronic structure methods 30 /50



The second Hohenberg-Kohn theorem

In practice, E,[p] is minimized under the constraint that the total
particle number N is fixed, by means of a Lagrange multiplier.

5 Ey|[p] 23

op(r) 1T

where p is the chemical potential.
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Universal and system-dependent functionals

Since kinetic and interaction energies of a nonrelativistic Coulomb
system are described by universal operators:

Eylp] = T[p] + Veelp] + Venlp] = Flp] + Ven|p]

where T'[p] and Vee[p] are universal functionals.

The potential energy in a given potential v(r) is the expectation value
of the potential:

ext Z |I’ — RI|
which reads:
Vutlp] = / &1 p(r) vext (r)

It is nonuniversal. But if the system is specified, i.e., v¢.(r) is
known, the functional V_,;[p] is known explicitly.
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DFT in practice

Once the external potential vey(r) is known and reliable
approximations for T'[p] and V,.[p] are available, the task reduces to
minimizing the total energy functional:

Bulp) = Tlp) + Vielg) + Vo) = Tlo) 4 Velpl + [ plo) voa () %

with respect to p(r).
e The minimizing function py(r) gives the ground state charge
density.

e The minimum value E, o = E,[po] is the ground state energy.
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Using DFT to explore physical properties

@ Suppose Vet (r) depends on a parameter a:

e e.g., lattice constant in a solid,
e angle between two atoms in a molecule.

o Calculate E, o(a) for various a values:
o The minimum determines the equilibrium configuration ag.
e From FE, o(a) one can compute:

e Molecular geometries and lattice constants,
e Unit cell volumes and charge distributions,
o Total energies and potential energy surfaces.
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Kohn-Sham DFT

o DFT can be implemented in many different ways.

e Minimizing an explicit energy functional E,[p] is possible, but
often computationally inefficient.

@ The most successful and widely used formulation is the
Kohn-Sham approach.

o It combines the conceptual simplicity of DF'T with the practical
convenience of working with single-particle orbitals.
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Key Idea of the Kohn-Sham method

This makes DFT look formally like a single-particle theory, but:

e many-body effects remain included, through the
exchange—correlation functional.

This elegant combination of orbital-based and density-based ideas
explains the success and popularity of the KS formalism.
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The exchange-correlation energy

@ Decomposition of the kinetic energy functional of interacting
electrons, T'[p], into two parts:

T[p] = Ti[p] + Te[p]

Ts[p] : kinetic energy of a system of noninteracting particles
with density p.

T.[p] : term accounting for correlation effects.

Subscripts:

o s = “single-particle” (noninteracting),
e ¢ = “correlation”.
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The exchange-correlation energy

e Ts[p] is not known as an explicit functional of p, but can be
expressed in terms of the Kohn—Sham orbitals {¢;(r)}:

N
Tl =5 Y [ w0V dr
=1

e Each orbital ¢;(r) corresponds to a single-particle state in an
auxiliary noninteracting system.

@ These orbitals reproduce the same total density.
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The exchange-correlation energy

e The Kohn-Sham orbitals {¢;(r)} are functionals of the density:

N
pr) =Y [ei(r)]”
7
@ Therefore, the kinetic energy can be written as:

Ts[p] = Ts[{ pilprl}]

@ This means:

e T, is an explicit orbital functional,
e but only an implicit density functional.
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The exchange-correlation energy

The exact energy functional can be rewritten as:

Elp] = Tlp] + Veelp] + Ven o) = Tsl{@ilpl}) + Vi lp] + Execlp) + Ven/p]

where:
e T — kinetic energy of the noninteracting system,
o Vi — classical Hartree (Coulomb) energy,
o F,. — exchange—correlation energy functional,
o V.n — electron—nuclear interaction.

The exchange—correlation term collects:
Exc — (T *Ts) + (Vvee - VH)

i.e. the difference between the noninteracting and interacting kinetic
energies.
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The exchange-correlation energy

o E..[p] combines two key effects:

Ewc = Ea: + Ec

o FE,: exchange energy (from the Pauli principle),
e E.: due to electron correlation.

@ The exchange energy can be expressed explicitly in terms of the
single-particle orbitals:

Eql{0:l :_72 /ds /d3 i ¢‘rz¢£/<’ )9 (x)

e F,. is formally exact, but its exact functional form is
unknown.
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The Kohn-Sham equa

@ Since T} is an orbital functional, direct minimization with
respect to p is not possible.
o Instead, Kohn and Sham proposed an indirect minimization

scheme based on functional derivatives:
_ OE[p]

dp(r)
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The Kohn-Sham equations

e Expanding the functional derivative gives:

0Bp] _ 0Tslp] | Vexslp] | 0Vilp] | 6Eic(p)
op(r) — op(r) ~ op(r) — dp(r) = p(r)

—5TS['D] Vext (T vg(r Vge(l
- 5p(r) + ext( )+ H( )+ z0(>

° 6;/;’22[)’) b = vext (r): the ’external’ potential the electrons move in (we
use Vgt for Ven).

° 5;;%? : simply yields the Hartree potential.

° 65;”(;[)’) l. which can only be calculated explicitly once an
approximation for F,. has been chosen, one commonly writes vgc.
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The Kohn-Sham equations

o Consider a system of noninteracting particles moving in a
potential vy(r).

@ The corresponding minimization condition is:

_ 0Es[p] _ 0Tilp] | SVslpl _ 0Tsp)
op(r)  dp(r) ~ dp(r)  dp(r)
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The Kohn-Sham equations

For the noninteracting case, there are no Hartree or
exchange-correlation terms.

Thus, the minimization condition simplifies to:
_ 6T5|p]

ép(r)

The density that satisfies this equation is the noninteracting
ground-state density ps(r).

o This defines the auxiliary system of noninteracting particles.
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The Kohn-Sham equations

o Both minimizations lead to the condition:
ps(r) = p(r) if vs(r) = vext(r) + va(r) + vzc(r)

e The many-body interacting system in veg(r) can thus be replaced
by a noninteracting system in vg(r).
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The Kohn-Sham equations

o The auxiliary noninteracting system is described by the
Kohn-Sham (KS) single-particle Schrédinger equation:

{—;V2 + vs(r)} i(r) = €idi(r)

@ The density of the original system is obtained from the
Kohn-Sham orbitals:

N
p(r) = po(r) = 3 fi lu(x)P
=1

@ f; denotes the occupation of orbital 7.
Kohn-Sham equations replace the problem of minimizing FE/[p]
by that of solving the Schrodinger equation for a
non-interacting system.
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The Kohn-Sham equations

@ Solving the Kohn-Sham equations is a nonlinear problem
because:

o The potentials vy [p] and v,.[p] depend on the density p(r),
o p(r) depends on the orbitals ¢;(r),
o and the orbitals ¢;(r) depend on the potential v;(r).

@ This circular dependence requires an iterative solution approach.

e The method used is known as the self-consistent field (SCF)
procedure.
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The Kohn-Sham equations

@ Once the self-consistent density po(r) has been obtained, the total
energy can be evaluated.

° The most convenient expression is:

o = Zez—f [ [t L [ o) ) + Bl
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change-correlation functionals

o Local functionals: LDA

Semilocal functionals: GGA
Meta-GGA
Hybrid functionals
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