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Computational chemistry

Computational chemistry/physics/materials science has become widely
used because of:

Dramatic increase in computational power/speed and the
Design of efficient quantum chemical algorithms.

The computer calculations enable us to:
explain and rationalize known chemistry.
explore new or unknown chemistry.
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The rise of computational chemistry in industry

More than 70% of the leading pharmaceutical companies have
integrated specialized computational chemistry teams that drive
strategic innovation.

Cost efficiency: Advanced molecular simulations systematically
minimize experimental iterations reducing R&D expenditures
significantly.
Early stage virtual screening: Computational protocols enable
rapid identification of optimal candidates, expediting discovery and
filtering ineffective molecules prior to experiment.
Enhanced prediction accuracy: High-precision computational
models improve the reliability of property predictions, guiding
more effective experimental validation strategies.
Accelerated development: Simulations expedite molecular
design cycles, enabling rapid hypothesis testing and shortening
product development timelines.

Benefits: Speed, Cost and Accuracy
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Putting computational chemistry to work!

Drug design
Medicinal chemistry design
Consumer packaged food
Protein/antibody engineering
Enzyme design
Organic electronics
Pharmaceutical formulations
Catalysis design
Polymer design
Surface chemistry
Energy capture and storage
Semiconductors
Peptide design
Metals, alloys, and ceramics design
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Postulates of quantum mechanics

1 Postulate 1
The state of a quantum system is described by the wavefunction
Ψ(r, t).
Ψ∗(r, t)Ψ(r, t) dτ gives the probability of finding the particle in
volume dτ at r.
Normalization:

∫∞
−∞ Ψ∗(r, t)Ψ(r, t) dτ = 1

Wavefunction must be single-valued, continuous, finite, and
normalized (also for many-particle systems).

2 Postulate 2
To every observable in classical mechanics there corresponds a
linear, Hermitian operator in quantum mechanics.
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Postulates of quantum mechanics

1 Postulate 3
Measurement of the observable associated to operator Â yields only
its eigenvalues a (eigenvalue equation):

ÂΨ(r, t) = aΨ(r, t)

If the system is in an eigenstate of Â, with a single eigenvalue a,
then any measurement will yield a.

2 Postulate 4
If a system is in a state described by a normalized wavefunction Ψ,
then the expectation value of the observable corresponding to Â is
given by:

⟨A⟩ =
∫ ∞

−∞
Ψ∗(r, t) ÂΨ(r, t) dτ
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Postulates of quantum mechanics

1 Postulate 5
The wavefunction or state function of a system evolves in time
according to the time-dependent Schrödinger equation (the central
equation of quantum mechanics):

Ĥ Ψ(r, t) = iℏ
∂

∂t
Ψ(r, t)

2 Postulate 6
The total wavefunction must be antisymmetric with respect to the
interchange of all coordinates of one fermion with those of another.
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The molecular Hamiltonian

Quantum chemistry is (typically) based on the non-relativistic
Schrödinger equation within the Born–Oppenheimer approximation.

Ĥtot(R,P, r,p)Ψtot(R,P, r,p) = E(R,P)Ψtot(R,P, r,p)

r,p = ∂/∂r: electronic collective coordinates.
R,P = ∂/∂R: nuclear collective coordinates.
E: allowed energy of the system.
Ψtot: function of the positions of all electrons and nuclei.
Ĥtot: differential operator constructed from the classical Hamiltonian.
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The molecular Hamiltonian

Due to Born-Oppenheimer approximation some terms coupling the
electrons and nuclei can be neglected.

Ψtot(R, r) = Ψnucl(R)Ψelec(r;R)

and
Ĥtot = T̂nucl(P,R) + Ĥelec(p, r;R)

ignoring the dependence of Ĥelec on the momenta of the nuclei P.

Solution of Schrödinger equation for the electrons, with fixed nuclei,
indicated by (;R):

Ĥelec(p, r;R)Ψelec(r;R) = E(R)Ψelec(r;R)

V (R), potential energy surface: collection of all possible nuclear
configurations, R together with the associated energies.
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The nuclear Schrödinger equation

V (R) is usually expanded to second order R about a stationary point
R0:

V (R) ≈ V (R0) +
1

2

∑
i,j

(
∂2V (R)

∂Ri∂Rj

)
(Ri −R0,i)(Rj −R0,j)

No need to solve the electronic Schrödinger equation at many R’s.
Only required:

locate stationary point R0.
evaluate energy and Hessian (second derivatives) at that R0.
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The electronic Schrödinger equation

Pauli exclusion principle: Because electrons are indistinguishable
fermions, any permutation of two electrons must change the sign of the
wavefunction Ψelect(r;R).

Slater determinant many-electron wavefunctions satisfy the Pauli
principle.

Ψel(r1, r2, . . . , rN ) =
∑

m1,m2,...,mN

Cm1,m2,...,mN

×
∣∣ϕm1(r1)ϕm2(r2) · · · ϕmN (rN )

∣∣
where

∣∣ϕm1(r1)ϕm2(r2) · · · ϕmN (rN )
∣∣ = 1√

N !

∣∣∣∣∣∣∣
ϕm1 (r1) ϕm2 (r1) ··· ϕmN

(r1)

ϕm1 (r2) ϕm2 (r2) ··· ϕmN
(r2)

...
...

. . .
...

ϕm1 (rN ) ϕm2 (rN ) ··· ϕmN
(rN )

∣∣∣∣∣∣∣
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The electronic Schrödinger equation

ϕmi(ri): one-electron molecular orbitals which are usually given as an
expansion in "atomic orbitals", χn:

ϕm(r, s) =
∑
n

Dmn χn(r)⊗ s

Coefficients D and C fully characterize the solution of the electronic
Schrödinger equation for atoms and molecules.

Electronic structure methods 13 / 50



Main topic of electronic structure methods

The development of approximated methods for the solution of
the Schrödinger equation for the electrons (given by the
coefficients D and C) for obtaining the potential for the nuclei
dynamics V (R).

Translation of this problem into a formulation suited for computation:
choose an appropriate set of basis functions.
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Basis functions in quantum chemistry

One or many-electron molecular wavefunctions are described in the
basis of atom centered functions.

Simplified atomic orbitals: sum of Gaussians centered on the atoms
times a polynomial, Pl, in the electron coordinates relative to that
atom:

χn(r) =
∑
l

N l
n exp

(
− αnl |r−Rn

I |2
)
Pl

(
r−Rn

I

)
Basis sets: conventional sets of atomic orbitals that cover the
polynomials up to a certain order with certain choices of "α".

Typical names: 6-31G, TZ2P and cc-pVQZ.

Algorithmic procedure for the choice of basis sets: choose a basis, then
vary coefficients D and C to approximate Ψelec that best solves the
Schrödinger equation.
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Hartree-Fock method

Hartree-Fock (HF) provides a mean-field approximation:
Electrons do not interact with each other. The effect of other
electrons is accounted for in a mean-field theory context.
Wavefunction represented as a single Slater determinant made of
one-electron molecular orbitals.
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Hartree-Fock equations

h(x1)ϕi(x1) +
∑
j ̸=i

[∫
dx2 |ϕj(x2)|2r−1

12

]
ϕi(x1)

−
∑
j ̸=i

[∫
dx2 ϕ

∗
j (x2)ϕi(x2)r

−1
12

]
ϕj(x1) = ϵiϕi(x1)

where ϵi is the energy eigenvalue associated with orbital ϕi.
First term: one-electron Hamiltonian h(x1).
Second: Coulomb interaction of an electron in spin orbital ϕi with
the average charge distribution of the other electrons. (HF: a
mean field theory).
Third: exchange term (it arises from the antisymmetry
requirement of the wavefunction).
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Hartree-Fock operator

f(x1) = h(x1) +
∑
j

(
Jj(x1)−Kj(x1)

)
f(x1)ϕi(x1) = ϵiϕi(x1)

Self-consistent eigenvalue problem.
Orbitals ϕi are eigenfunctions of f .
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Self-consistent-field procedure

In matrix form: ∑
ν

FµνDνi = ϵi
∑
ν

SµνDνi

More simple as matrices:
FD = SDε

ε is a diagonal of the orbital energies ϵi.
Generalized eigenvalue problem: FD = SDε

To simplify: transform to an orthogonal basis (S → I).
Then it reduces to a standard eigenvalue problem for F.
But: F depends on the orbitals (and thus on D).
⇒ Must solve iteratively until self-consistency is reached.

Solution of Hartree-Fock-Roothaan equations are often called
the self-consistent-field procedure.
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Why Density Functional Theory (DFT)?

DFT is one of the most popular and successful
quantum-mechanical approaches to matter.
Routinely used to compute:

Molecular binding energies
Band structures of solids
Widely applied across disciplines: from biology to materials science.

DFT bridges quantum mechanics and real materials —
from atoms to solids.
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From wavefunction to density

All information about a system is contained in its wavefunction Ψ, the
lowest-energy solution of the many-electron Schrödinger equation:[

− 1

2

∑
i

∇2
i −

∑
I,i

ZI

|RI − ri|
+

∑
I>J

ZIZJ

|RI −RJ |

+
∑
i>j

1

|ri − rj |

]
Ψ(r,R) = EelΨ(r,R)

or, more compactly:[
T̂e(r) + V̂eN (r,R) + V̂NN (R) + V̂ee(r)

]
Ψ(r,R) = EelΨ(r,R)

External potential: v(r,R) generated by the nuclei.
For fixed nuclei: often written simply as v(r).
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Conventional quantum mechanical approach

Standard sequence:

v(r,R) =⇒ Ψ(r1, . . . , rN ) =⇒ Observables

One observable obtained this way is the electron density ρ(r).
Wavefunction-based methods (HF, CI, etc.) require massive
computational effort:

Scales poorly with system size.
Full-CI impractical beyond a few electrons.

DFT provides a practical, accurate alternative for medium
(100 electrons) to large (thousands of electrons) systems.
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The core idea of DFT

The electron density is at the center of DFT.
DFT recognizes that nonrelativistic Coulomb systems differ only
by their potential v(r,R).
The universal operators T̂e (kinetic) and V̂ee (electron–electron
interaction) are treated once and for all.
DFT provides a systematic way to map the many-body problem
(with V̂ee) onto a single-body problem (without V̂ee).
The calculation of the observables can be based on the electron
density.
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The density functional concept

Conceptual structure of DFT:

ρ(r) =⇒ Ψ(r1, r2, . . . , rN ) =⇒ v(r)

Knowing the ground-state density ρ(r) uniquely determines the
wavefunction and potential and in turn all the observables.
In practice, modern DFT calculations bypass explicit use of
many-body wavefunctions.
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The Hohenberg-Kohn theorem

The Hohenberg-Kohn (HK) theorem is the foundation of
DFT.
It states that the ground-state density ρ0(r) uniquely determines:

the ground-state wavefunction Ψ0(r1, . . . , rN ),
and thus all ground-state observables.

The theorem states that for the ground state the equation:

ρ(r) = M

∫
· · ·
∫

Ψ(r, r2, . . . , rN )Ψ∗(r, r2, . . . , rN ) dr2 · · · drN

can be inverted.
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The Hohenberg-Kohn theorem

Given ρ0(r), one can in principle calculate Ψ0.
Therefore, all ground-state observables are functionals of ρ0.
This might seem impossible at first:

ρ(r) depends on 3 variables,
Ψ(r1, . . . , rN ) depends on 3N variables.

The key: Ψ0 is not an arbitrary function; it must not only
reproduce ρ0 but minimize the energy as well.
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The Hohenberg-Kohn theorem

For a given ground-state density, the ground-state energy is:

Ev,0 = min
Ψ→ρ0

⟨Ψ|T̂ + V̂ee + V̂eN |Ψ⟩

For an arbitrary density ρ(r), we define:

Ev[ρ] = min
Ψ→ρ

⟨Ψ|T̂ + V̂ee + V̂eN |Ψ⟩

If ρ a density different from the ground state density ρ0 in the
external potential v(r), then the Ψ that produces this density ρ is
different from the ground state wavefunction Ψ0, and according to
the variational principle the minimum obtained from Ev[ρ] is
higher than (or equal to) the ground state energy Ev,0 = Ev[ρ0].
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The Hohenberg-Kohn theorem

The total energy functional can be written as:

Ev[ρ] = min
Ψ→ρ

⟨Ψ|T̂ + V̂ee|Ψ⟩+
∫

d3rρ(r) v(r)

=: F [ρ] + V [ρ]

F [ρ] = minΨ→ρ⟨Ψ|T̂ + V̂ee|Ψ⟩ : internal energy functional;
independent of the external potential.
The universality of the internal energy functional allows us to
define the ground state wavefunction as that antisymmetric
N -particle function that delivers the minimum of F [ρ] and
reproduces ρ0.
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The first Hohenberg-Kohn theorem

The nondegenerate ground-state wavefunction Ψ0 is a unique functional
of the ground state density ρ0(r).

Ψ0(r, r2, . . . , rN ) = Ψ[ρ0(r)]

All ground-state observables Ô are also functionals of ρ0:

O0 = O[ρ0] = ⟨Ψ[ρ0]|Ô|Ψ[ρ0]⟩

Electronic structure methods 29 / 50



The second Hohenberg-Kohn theorem

For the special case of the total energy observable:

Ev,0 = Ev[ρ0] = ⟨Ψ[ρ0]|Ĥ|Ψ[ρ0]⟩

where Ĥ = T̂ + V̂ee + V̂eN .

The variational property holds:

Ev[ρ0] ≤ Ev[ρ
′]

Analogous to the standard variational principle for Ψ:

Ev,0 = ⟨Ψ0|Ĥ|Ψ0⟩ ≤ ⟨Ψ′|Ĥ|Ψ′⟩ = Ev[Ψ
′]

In exact DFT, if E[ρ] for fixed vext is evaluated for a density that is not
the ground state density of the system in potential vext, one never finds
a result below the true ground state energy.
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The second Hohenberg-Kohn theorem

In practice, Ev[ρ] is minimized under the constraint that the total
particle number N is fixed, by means of a Lagrange multiplier.

δEv[ρ]

δρ(r)
= µ =

∂E

∂N

where µ is the chemical potential.
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Universal and system-dependent functionals

Since kinetic and interaction energies of a nonrelativistic Coulomb
system are described by universal operators:

Ev[ρ] = T [ρ] + Vee[ρ] + VeN [ρ] = F [ρ] + VeN [ρ]

where T [ρ] and Vee[ρ] are universal functionals.

The potential energy in a given potential v(r) is the expectation value
of the potential:

V̂ext(r) =
∑
I

ZI

|r−RI |

which reads:
Vext[ρ] =

∫
d3rρ(r) vext(r)

It is nonuniversal. But if the system is specified, i.e., vext(r) is
known, the functional Vext[ρ] is known explicitly.
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DFT in practice

Once the external potential vext(r) is known and reliable
approximations for T [ρ] and Vee[ρ] are available, the task reduces to
minimizing the total energy functional:

Ev[ρ] = T [ρ] + Vee[ρ] + VeN [ρ] = T [ρ] + Vee[ρ] +

∫
ρ(r) vext(r) d

3r

with respect to ρ(r).
The minimizing function ρ0(r) gives the ground state charge
density.
The minimum value Ev,0 = Ev[ρ0] is the ground state energy.
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Using DFT to explore physical properties

Suppose vext(r) depends on a parameter a:
e.g., lattice constant in a solid,
angle between two atoms in a molecule.

Calculate Ev,0(a) for various a values:
The minimum determines the equilibrium configuration a0.

From Ev,0(a) one can compute:
Molecular geometries and lattice constants,
Unit cell volumes and charge distributions,
Total energies and potential energy surfaces.
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Kohn-Sham DFT

DFT can be implemented in many different ways.
Minimizing an explicit energy functional Ev[ρ] is possible, but
often computationally inefficient.
The most successful and widely used formulation is the
Kohn-Sham approach.
It combines the conceptual simplicity of DFT with the practical
convenience of working with single-particle orbitals.
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Key Idea of the Kohn-Sham method

This makes DFT look formally like a single-particle theory, but:
many-body effects remain included, through the
exchange–correlation functional.

This elegant combination of orbital-based and density-based ideas
explains the success and popularity of the KS formalism.
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The exchange-correlation energy

Decomposition of the kinetic energy functional of interacting
electrons, T [ρ], into two parts:

T [ρ] = Ts[ρ] + Tc[ρ]

Ts[ρ] : kinetic energy of a system of noninteracting particles
with density ρ.
Tc[ρ] : term accounting for correlation effects.
Subscripts:

s = “single-particle” (noninteracting),
c = “correlation”.
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The exchange-correlation energy

Ts[ρ] is not known as an explicit functional of ρ, but can be
expressed in terms of the Kohn–Sham orbitals {ϕi(r)}:

Ts[ρ] = −1

2

N∑
i=1

∫
ϕ∗
i (r)∇2ϕi(r) d

3r

Each orbital ϕi(r) corresponds to a single-particle state in an
auxiliary noninteracting system.
These orbitals reproduce the same total density.
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The exchange-correlation energy

The Kohn-Sham orbitals {ϕi(r)} are functionals of the density:

ρ(r) =

N∑
i

|ϕi(r)|2

Therefore, the kinetic energy can be written as:

Ts[ρ] = Ts[{ϕi[ρ]}]

This means:
Ts is an explicit orbital functional,
but only an implicit density functional.
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The exchange-correlation energy

The exact energy functional can be rewritten as:

E[ρ] = T [ρ] + Vee[ρ] + VeN [ρ] = Ts[{ϕi[ρ]}] + VH [ρ] + Exc[ρ] + VeN [ρ]

where:
Ts – kinetic energy of the noninteracting system,
VH – classical Hartree (Coulomb) energy,
Exc – exchange–correlation energy functional,
VeN – electron–nuclear interaction.

The exchange–correlation term collects:

Exc = (T − Ts) + (Vee − VH)

i.e. the difference between the noninteracting and interacting kinetic
energies.
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The exchange-correlation energy

Exc[ρ] combines two key effects:

Exc = Ex + Ec

Ex: exchange energy (from the Pauli principle),
Ec: due to electron correlation.

The exchange energy can be expressed explicitly in terms of the
single-particle orbitals:

Ex[{ϕi[ρ]}] = −1

2

∑
i,j

∫
d3r

∫
d3r′

ϕ∗
i (r)ϕ

∗
j (r

′)ϕi(r
′)ϕj(r)

|r− r′|

Exc is formally exact, but its exact functional form is
unknown.
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The Kohn-Sham equations

Since Ts is an orbital functional, direct minimization with
respect to ρ is not possible.
Instead, Kohn and Sham proposed an indirect minimization
scheme based on functional derivatives:

0 =
δE[ρ]

δρ(r)

Electronic structure methods 42 / 50



The Kohn-Sham equations

Expanding the functional derivative gives:

δE[ρ]

δρ(r)
=

δTs[ρ]

δρ(r)
+

δVext[ρ]

δρ(r)
+

δVH [ρ]

δρ(r)
+

δExc[ρ]

δρ(r)

=
δTs[ρ]

δρ(r)
+ vext(r) + vH(r) + vxc(r)

δVext[ρ]
δρ(r) = vext(r): the ’external’ potential the electrons move in (we

use Vext for VeN ).
δVH [ρ]
δρ(r) : simply yields the Hartree potential.
δExc[ρ]
δρ(r) : which can only be calculated explicitly once an

approximation for Exc has been chosen, one commonly writes vxc.
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The Kohn-Sham equations

Consider a system of noninteracting particles moving in a
potential vs(r).
The corresponding minimization condition is:

0 =
δEs[ρ]

δρ(r)
=

δTs[ρ]

δρ(r)
+

δVs[ρ]

δρ(r)
=

δTs[ρ]

δρ(r)
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The Kohn-Sham equations

For the noninteracting case, there are no Hartree or
exchange-correlation terms.
Thus, the minimization condition simplifies to:

0 =
δTs[ρ]

δρ(r)

The density that satisfies this equation is the noninteracting
ground-state density ρs(r).
This defines the auxiliary system of noninteracting particles.
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The Kohn-Sham equations

Both minimizations lead to the condition:
ρs(r) ≡ ρ(r) if vs(r) = vext(r) + vH(r) + vxc(r)

The many-body interacting system in vext(r) can thus be replaced
by a noninteracting system in vs(r).
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The Kohn-Sham equations

The auxiliary noninteracting system is described by the
Kohn–Sham (KS) single-particle Schrödinger equation:[

−1

2
∇2 + vs(r)

]
ϕi(r) = ϵiϕi(r)

The density of the original system is obtained from the
Kohn-Sham orbitals:

ρ(r) ≡ ρs(r) =

N∑
i=1

fi |ϕi(r)|2

fi denotes the occupation of orbital i.
Kohn-Sham equations replace the problem of minimizing E[ρ]
by that of solving the Schrödinger equation for a
non-interacting system.
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The Kohn-Sham equations

Solving the Kohn-Sham equations is a nonlinear problem
because:

The potentials vH [ρ] and vxc[ρ] depend on the density ρ(r),
ρ(r) depends on the orbitals ϕi(r),
and the orbitals ϕi(r) depend on the potential vs(r).

This circular dependence requires an iterative solution approach.
The method used is known as the self-consistent field (SCF)
procedure.
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The Kohn-Sham equations

Once the self-consistent density ρ0(r) has been obtained, the total
energy can be evaluated.
The most convenient expression is:

E0 =
N∑
i=1

ϵi −
1

2

∫
d3r

∫
d3r′

ρ0(r) ρ0(r
′)

|r− r′|
−
∫

d3r vxc(r) ρ0(r) + Exc[ρ0]
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Exchange-correlation functionals

Local functionals: LDA
Semilocal functionals: GGA
Meta-GGA
Hybrid functionals
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